If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3y2 + -10y + 6 = 0 Reorder the terms: 6 + -10y + 3y2 = 0 Solving 6 + -10y + 3y2 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 2 + -3.333333333y + y2 = 0 Move the constant term to the right: Add '-2' to each side of the equation. 2 + -3.333333333y + -2 + y2 = 0 + -2 Reorder the terms: 2 + -2 + -3.333333333y + y2 = 0 + -2 Combine like terms: 2 + -2 = 0 0 + -3.333333333y + y2 = 0 + -2 -3.333333333y + y2 = 0 + -2 Combine like terms: 0 + -2 = -2 -3.333333333y + y2 = -2 The y term is -3.333333333y. Take half its coefficient (-1.666666667). Square it (2.777777779) and add it to both sides. Add '2.777777779' to each side of the equation. -3.333333333y + 2.777777779 + y2 = -2 + 2.777777779 Reorder the terms: 2.777777779 + -3.333333333y + y2 = -2 + 2.777777779 Combine like terms: -2 + 2.777777779 = 0.777777779 2.777777779 + -3.333333333y + y2 = 0.777777779 Factor a perfect square on the left side: (y + -1.666666667)(y + -1.666666667) = 0.777777779 Calculate the square root of the right side: 0.881917104 Break this problem into two subproblems by setting (y + -1.666666667) equal to 0.881917104 and -0.881917104.Subproblem 1
y + -1.666666667 = 0.881917104 Simplifying y + -1.666666667 = 0.881917104 Reorder the terms: -1.666666667 + y = 0.881917104 Solving -1.666666667 + y = 0.881917104 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1.666666667' to each side of the equation. -1.666666667 + 1.666666667 + y = 0.881917104 + 1.666666667 Combine like terms: -1.666666667 + 1.666666667 = 0.000000000 0.000000000 + y = 0.881917104 + 1.666666667 y = 0.881917104 + 1.666666667 Combine like terms: 0.881917104 + 1.666666667 = 2.548583771 y = 2.548583771 Simplifying y = 2.548583771Subproblem 2
y + -1.666666667 = -0.881917104 Simplifying y + -1.666666667 = -0.881917104 Reorder the terms: -1.666666667 + y = -0.881917104 Solving -1.666666667 + y = -0.881917104 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1.666666667' to each side of the equation. -1.666666667 + 1.666666667 + y = -0.881917104 + 1.666666667 Combine like terms: -1.666666667 + 1.666666667 = 0.000000000 0.000000000 + y = -0.881917104 + 1.666666667 y = -0.881917104 + 1.666666667 Combine like terms: -0.881917104 + 1.666666667 = 0.784749563 y = 0.784749563 Simplifying y = 0.784749563Solution
The solution to the problem is based on the solutions from the subproblems. y = {2.548583771, 0.784749563}
| -21+(-26z+21)+22z=-22+(21z-22) | | 3/4y=21 | | (2x+6)2= | | 3(z-3)=2y-9+y | | 3x-(2)=2 | | 24a-8-10a=-2(2-7a) | | 24a-8-10a=-2(2-7) | | 9(2m+50)=-14 | | 16=-b/4 | | (12x^2-8xy)-5(3xz-2yz)=0 | | 3y^2-10y+6= | | 3x^2+3x=8 | | 7x-10=y | | 12=2c | | 5x-4x=x-13 | | 3(3x-1)-4(2x-1)=(3x-1)(2x-1) | | (3t-3st)+(rs+r)=0 | | 9-b+8b=23 | | 13y=-16 | | -300=5x-x^2 | | (D-4)(d+10)=-17 | | 2x+4y=3 | | n/6=36 | | 4/a+3+2/3a | | y/4+2=0 | | K^2-8k-1=0 | | y/4+=0 | | 2x-1=2x+11 | | (s^2-2ps+2s)-(2s-4p+4)=0 | | 6y^3= | | 16=2(y-1)-6 | | -4[x-1]=3[2+x] |